THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4230 2024-25 Lecture 7 February 4, 2025 (Tuesday)

1 Recall

Г

The problem (P) and the *feasible* set K as follows:

$$\inf_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} g_i(x) \le 0, \quad i = 1, \dots, \ell \\ h_j(x) = 0, \quad j = 1, \dots, m \end{cases}$$
(P)
where $f, g_i, h_j \in C^1$, and
 $K = \{x \in \mathbb{R}^n : g_i(x) \le 0, \ h_j(x) = 0, \ i = 1, \dots, \ell, \ j = 1, \dots, m\}$

Also, together with optimal solution x^* and the **qualification**, we have the following:

KKT Theorem:

Let $x^* \in K$ be a solution to (P) and assume that K is **qualified** at x^* . Then there exists $\lambda_1, \dots, \lambda_\ell \ge 0$ and $\mu_1, \dots, \mu_m \in \mathbb{R}$ such that

$$\begin{cases} \sum_{i=1}^{\ell} \lambda_i g_i(x^*) = 0\\ \nabla f(x^*) + \sum_{i=1}^{\ell} \lambda_i \nabla g_i(x^*) + \sum_{j=1}^{m} \mu_j \nabla h_j(x^*) = \mathbf{0} \end{cases}$$

For the qualification conditions that we had mentioned before, we have two conditions:

Mangasarian Fromovitz Qualification condition:

- ① the family of vectors $\{\nabla h_1(x), \ldots, \nabla h_m(x)\}$ is linearly independent.
- (2) there exists a vector $v \in \mathbb{R}^n$ satisfying

$$\langle \nabla h_j(x^*), v \rangle = 0, \ \forall j = 1, \dots, m$$

and

$$\langle \nabla g_i(x^*), v \rangle < 0, \ \forall i \in I(x) := \{k : g_k(x) = 0\}.$$

Then the constraint K is qualified at $x \in K$.

Abadie's Condition:

$$T_{K}(x) = \left\{ v \in \mathbb{R}^{n} : \exists (s_{k}, v_{k}) \to (0^{+}, v) \text{ and } x + s_{k}v_{k} \in K \right\}$$
$$D = \left\{ v \in \mathbb{R}^{n} : \frac{\langle \nabla g_{i}(x), v \rangle \leq 0, \forall i = 1, \dots, \ell \text{ satisfying } g_{i}(x) = 0}{\langle \nabla h_{j}(x), v \rangle = 0, \forall j = 1, \dots, m} \right\}$$

If $T_K(x) = D$, then the constraint K is qualified at $x \in K$.

2 Application

Example 1. Solve the following problem:

$$\min_{\substack{x^2+y^2+z^2 \le 1 \\ x \ge 0}} x + y + z.$$

Solution. Letting f(x, y, z) = x + y + z. Clearly, now n = 3 and we only have the inequality constraints, put $g_1(x, y, z) = x^2 + y^2 + z^2 - 1$ and $g_2(x, y, z) = -x$. Now, first, we consider

$$K = \{(x, y, z) \in \mathbb{R}^3 : g_1(x, y, z) \le 0, \ g_2(x, y, z) \le 0\}$$

is compact, and f(x, y, z) is continuous, so there exists a minimizer, say (x^*, y^*, z^*) . Then, we compute

$$\nabla g_1(x,y,z) = \begin{pmatrix} 2x\\2y\\2z \end{pmatrix}, \quad \nabla g_2(x,y,z) = \begin{pmatrix} -1\\0\\0 \end{pmatrix}$$

Let $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ be such that $v_1 > 0$, then we have $\langle v, \nabla g_2 \rangle = -v_1 < 0$.

Now, to choose v_2, v_3 , we consider the following cases:

- Case 1: y* = z* = 0, Then ⟨v, ∇g₁(x, y, z)⟩ = 2v₁ · x* ≥ 0. So, the Mangasarian-Fromovitz Qualification condition is not satisfied. In this case, we cannot apply the KKT theorem and thus the solution is (x*, y*, z*) = (0, 0, 0).
- Case 2: $y^* z^* \neq 0$ Then there exists (v_2, v_3) such that

$$\langle v, \nabla g_1(x, y, z) \rangle = 2 \cdot (v_1 x^* + v_2 y^* + v_3 z^*) < 0$$

So, the Mangasarian-Fromovitz Qualification condition is satisfied. As the qualification holds, we can apply the KKT theorem, so there exists $\lambda_1, \lambda_2 \ge 0$ such that

$$\lambda_1 g_1(x, y, z) = \lambda_2 g_2(x, y, z) = 0$$

and

$$\begin{pmatrix} 1\\1\\1 \end{pmatrix} + \lambda_1 \begin{pmatrix} 2x^*\\2y^*\\2z^* \end{pmatrix} + \lambda_2 \begin{pmatrix} -1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$
$$\implies \begin{cases} 1+2\lambda_1x^* - \lambda_2 = 0\\1+2\lambda_1y^* = 0\\1+2\lambda_1z^* = 0 \end{cases}$$

From the above, we can deduce that $\lambda_1 \neq 0$, so we have $y^* = z^* = -\frac{1}{2\lambda_1}$. Putting back to the first equation, we have $x^* = \frac{\lambda_2 - 1}{2\lambda_1} \ge 0$. These imply that $\lambda_1 > 0$ and $\lambda_2 \ge 1 > 0$, so $g_1(x^*, y^*, z^*) = g_2(x^*, y^*, z^*) = 0$. So, we have $x^* = 0$ and $(x^*)^2 + (y^*)^2 + (z^*)^2 - 1 = 0$.

Putting all together, we have $x^* = 0$ and $y^* = z^* = -\frac{\sqrt{2}}{2}$. By comparing the values of f at (0, 0, 0) and $(0, -\sqrt{2}/2, -\sqrt{2}/2)$, we conclude that

$$f\left(0, -\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right) = -\sqrt{2} < 0 = f(0, 0, 0)$$

and so the optimizer is $(x^*, y^*, z^*) = \left(0, -\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right).$

Let us finish this part by introducing one more example. **Example 2.** Solve the following problem

$$\min_{\substack{x^2+y^2+z^2=1\\x+y+z\leq 0}} x+2y+3z.$$

Solution. Letting f(x, y, z) = x + 2y + 3z and n = 3. Let g(x, y, z) = x + y + z and $h(x, y, z) = x^2 + y^2 + z^2$. Now, first, we consider

 $K = \{(x, y, z) \in \mathbb{R}^3 : g(x, y, z) \le 0, \ h(x, y, z) = 0\}$

is compact, and f(x, y, z) is continuous, so there exists a minimizer, say (x^*, y^*, z^*) . Secondly, we compute

$$\nabla f = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \ \nabla g = \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ \nabla h = \begin{pmatrix} 2x^*\\2y^*\\2z^* \end{pmatrix}$$

- ① For $(x^*, y^*, z^*) \neq 0$, then $\{\nabla h(x^*, y^*. z^*)\}$ is linearly independent.
- (2) There exists $v \in \mathbb{R}^3$ such that

$$\langle v, \nabla h(x^*, y^*, z^*) \rangle = \left\langle v, 2 \begin{pmatrix} x^* \\ y^* \\ z^* \end{pmatrix} \right\rangle = 0$$

and

$$\langle v, \nabla g \rangle = \left\langle v, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\rangle \neq 0$$

If $\langle v, \nabla g \rangle < 0$, the qualification condition is automatically satisfied. If $\langle v, \nabla g \rangle > 0$, then we can replace v by -v so that $\langle -v, \nabla g \rangle < 0$ and $\langle -v, \nabla h(x^*, y^*, z^*) \rangle = 0$ so that the qualification condition holds.

So, the M-F condition holds. By the KKT theorem, there exist $\lambda \ge 0$ and $\mu \in \mathbb{R}$ such that

$$\begin{cases} \lambda g(x^*, y^*, z^*) = 0\\ \nabla f(x^*, y^*, z^*) + \lambda \nabla g(x^*, y^*, z^*) = 0 + \mu \nabla h(x^*, y^*, z^*) = \mathbf{0} \\ \implies \begin{cases} \lambda(x^* + y^* + z^*) = 0 & (1)\\ \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix} + \mu \begin{pmatrix} 2x^*\\ 2y^*\\ 2z^* \end{pmatrix} = \mathbf{0} \quad (2) \end{cases}$$

By solving equations in (2), we can conclude $\mu \neq 0$ and

$$x^* = -\frac{1+\lambda}{\mu}, \ y^* = -\frac{2+\lambda}{\mu}, \ z^* = -\frac{3+\lambda}{\mu}.$$

Hence, putting all into (1) and gives

$$\lambda \cdot (x^* + y^* + z^*) = -\frac{\lambda(6+3\lambda)}{\mu} = 0 \implies 3\lambda(2+\lambda) = 0$$

Therefore, we have $\lambda = 0$ or $\lambda = 2$, we consider the following cases:

- Case 1: $\lambda = 0$ Then, we have $x^* = -\frac{1}{\mu}$, $y^* = -\frac{2}{\mu}$ and $z^* = -\frac{3}{\mu}$. Putting $(x^*)^2 + (y^*)^2 + (z^*)^2 = 1$, we have $1 = \frac{1}{\mu^2} + \frac{4}{\mu^2} + \frac{9}{\mu^2} \implies \mu^2 = 14$. So, in this case, we can solve $x^* = -\frac{1}{\sqrt{14}}$, $y^* = -\frac{2}{\sqrt{14}}$, $z^* = -\frac{3}{\sqrt{14}}$.
- Case 2: $\lambda = 2$ Then, we have $x^* = \frac{1}{\mu}$, $y^* = 0$ and $z^* = -\frac{1}{\mu}$. Putting $(x^*)^2 + (y^*)^2 + (z^*)^2 = 1$, we have

$$\frac{1}{\mu^2} + \frac{1}{\mu^2} = 1$$
$$\mu = \sqrt{2}$$

So, we solve $x^* = \frac{\sqrt{2}}{2}$, $y^* = 0$, $z^* = -\frac{\sqrt{2}}{2}$.

Now, it remains to compare f at $(-1/\sqrt{14}, -2/\sqrt{14}, -3/\sqrt{14})$ and $(\sqrt{2}/2, 0, -\sqrt{2}/2)$. We have

$$f\left(-\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}\right) = -\frac{1}{\sqrt{14}} - \frac{4}{\sqrt{14}} - \frac{9}{\sqrt{14}}$$
$$= -\sqrt{14}$$
$$< -\sqrt{2}$$
$$= f\left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2}\right)$$

Thus, we have

$$\min_{\substack{x^2+y^2+z^2=1\\x+y+z\leq 0}} x+2y+3z = -\sqrt{14}$$

and the optimal solution is $(x^*, y^*, z^*) = \left(-\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}\right).$

3 Convex Optimization

Today, we begin a new chapter - Convex Optimization. The main reference for the second part of our course is:

In this section, we consider the following problem

 $\inf_{x \in K} f(x) \begin{cases} f \text{ is convex} \\ K \text{ is convex} \end{cases}$ and $K = \{x \in \mathbb{R}^n : g_i(x) \le 0, \ h_j(x) = 0, \ i = 1, \dots, \ell, \ j = 1, \dots, m\}$ with $g_i(\cdot)$ and $h_j(\cdot)$ are convex functions.

Convex Set

Definition 1. A set $K \subseteq \mathbb{R}^n$ is said to be **convex** if

$$\lambda x + (1 - \lambda)y \in K$$

whenever $x, y \in K$ and $\lambda \in [0, 1]$.

Figure 1: Example and Counterexample of Convex Set

Example 3. The following are examples of Convex sets.

(1) \mathbb{R}^n is convex.

(2) $\mathbb{R}^{n}_{+} := \{x \in \mathbb{R}^{n} : x_{1} \geq 0, i = 1, 2, ..., n\}$ is convex, because

$$\forall x, y \in \mathbb{R}^n_+ \implies \lambda x + (1 - \lambda)y = (\lambda x_i + (1 - \lambda)y_i)_{i=1,2,\dots,n} \in \mathbb{R}^n_+$$

(3) Balls: $K := \{x \in \mathbb{R}^n : ||x|| \le 1\}$ is convex because

 $\forall x, y \in K \implies \|\lambda x + (1 - \lambda)y\| \le \lambda \|x\| + (1 - \lambda)\|y\| \le 1$

$$(\textcircled{4}) \quad K := \{ x \in \mathbb{R}^n : A^T x \le b \text{ or } A^T x = b, \text{ where } A \in \mathbb{R}^n, b \in \mathbb{R} \} \text{ is convex because}$$
$$\forall x, y \in K \implies A^T (\lambda x + (1 - \lambda)y) = \lambda \underbrace{A^T x}_{\le b} + (1 - \lambda) \underbrace{A^T y}_{\le b} \le b$$

Lemma 1. Let K_1, \dots, K_m be convex subsets of \mathbb{R}^n . Then

$$\bigcap_{i=1}^{m} K_i \quad is \ convex.$$

Proof. For any $x, y \in \bigcap K_i$, we have $x \in K_i$, $y_i \in K_i$ for all i = 1, 2, ..., m. Since each K_i is convex, so for every $\lambda \in [0, 1]$, we have

$$\lambda x + (1 - \lambda)y \in K_i \quad \forall i = 1, \dots, m$$
$$\implies \lambda x + (1 - \lambda)y \in \bigcap K_i$$

Projection onto convex Set

Definition 2. Let K be a closed convex subset of \mathbb{R}^n . Then for any $y \in \mathbb{R}^n$, we define the closed point to y in K as

$$\operatorname{proj}_{K}(y) = \arg\min_{x \in K} \|y - x\|$$

and call it the projection of y onto K.

Proposition 2. Let K be a closed convex subset of \mathbb{R}^n . Then, there exist a unique point $x^* \in K$ such that

$$||y - x^*|| = \min_{x \in K} ||y - x||.$$

Remarks. If K is open, then the projection $\text{proj}_K(y)$ may not exist.

For example, if n = 1, K = (0, 1) and y = 2, but the minimizer to $\inf_{x \in (0, 1)} ||y - x||$ does not exist.

Remarks. It is equivalent to consider $\inf_{x \in K} ||y - x||^2$ in the definition of $\operatorname{proj}_K(y)$.

- End of Lecture 7 -