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1 Recall

The problem (P) and the feasible set K as follows:

() <0, i=1,...,¢
inf f(x) subjectto {}gl(x)_() '

reR™

j(x)=0, j=1,...,m )

where f, g, h; € C*, and

K={xeR":gi(x) <0, hj(zr)=0,i=1,....¢, j=1,...,m}

Also, together with optimal solution * and the qualification, we have the following:

KKT Theorem:
Let * € K be a solution to (P) and assume that K is qualified at z*. Then there exists
Ay, A > 0and pq, - -+, fn, € R such that

¢
Y Nigi(z7) =0
i=1

V4 m
V) + Y NVg(a) + Y pVhi(z*) =0
i=1 7=1

For the qualification conditions that we had mentioned before, we have two conditions:

Mangasarian Fromovitz Qualification condition:

(D the family of vectors {Vh(z), ..., Vh,(z)} is linearly independent.
@ there exists a vector v € R" satisfying
(Vhij(z"),v) =0,Vj=1,...,m

and
(Vgi(x*),v) <0, Vi € I(x) :={k : gp(x) = 0}.

Then the constraint K is qualified at x € K.

Abadie’s Condition:

Tk (z) = {v € R": 3(s,vx) = (0%,v) and z + spvy, € K}

(Vgi(x),v) <0, Vi=1,...,¢ satisfying g;(z) = 0}

D:{UER : (Vhi(z),v) =0, Vj=1,....,m

If Tk (x) = D, then the constraint K is qualified at z € K.
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2 Application
Example 1. Solve the following problem:

min x4+ y+ 2.
22 4y?4+22<1
x>0
Solution. Letting f(z,y,2) = = + y + z. Clearly, now n = 3 and we only have the inequality
constraints, put g (x,y, z) = 2° + y* + 2*> — 1 and go(2, y, 2) = —x.
Now, first, we consider

K= {(I,y,Z) € R?) : gl(l‘,y,Z) S 07 92<x7y7 Z) S O}

is compact, and f(x,y, z) is continuous, so there exists a minimizer, say (z*,y",2*). Then, we
compute

2x —1
VQI(xay7Z> = 2y s V92($»y;2’) = 0
2z 0
%1
Let v = [ vy | be such that v; > 0, then we have (v, Vgo) = —v; < 0.
U3

Now, to choose vs, v3, we consider the following cases:

e Casel: y" = 2z" =0,
Then (v, Vg1 (z,y, 2)) = 20, - 2" > 0.
So, the Mangasarian-Fromovitz Qualification condition is not satisfied.
In this case, we cannot apply the KKT theorem and thus the solution is (z*,y*, 2*) = (0,0, 0).

* Case2: y"2" #0
Then there exists (v, v3) such that

(v, Vagi(z,y,2)) =2 (n1z" + vay* +v32") <0

So, the Mangasarian-Fromovitz Qualification condition is satisfied.
As the qualification holds, we can apply the KKT theorem, so there exists A;, A, > 0 such that

)\191(1‘7:% Z) = /\292(1’7ij’) =0

and
1 2x* -1 0
Ll4+XM 2y +X| 0 ]=10
1 22" 0 0

1—|—2)\1$*—)\2:O
== S 1+2\y" =0
1+2>\12*:O

1
From the above, we can deduce that \; # 0, so we have y* = 2* = W
1

Ao —1
Putting back to the first equation, we have z* = 22 3 > 0.
1
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These imply that A\; > 0and A\, > 1 > 0, so g1 (2", y", 2%) = go(2*, 9", 2¥) = 0.
So, we have 2* = 0 and (2*)* + (y*)* + (2*)* = 1 = 0.

V2

Putting all together, we have 2" = 0 and y* = 2* = ——.
By comparing the values of f at (0, 0,0) and (0, —v/2/2, —v/2/2), we conclude that

f <0, —?, —?) = —V/2 < 0= f(0,0,0)

V2 V2
27 2 )

and so the optimizer is (z*,y*, 2*) = (0, ——

Let us finish this part by introducing one more example.

Example 2. Solve the following problem

min  x + 2y + 3z.
24y 422=1
2+y+2<0

Solution. Letting f(x,y,2) =+ 2y + 3zandn = 3. Let g(x,y,2) = v+ y + z and h(z,y,2) =

2 .2, .2
Tty + 2
Now, first, we consider

K ={(x,y,2) € R*: g(x,y,2) <0, h(z,y,2) = 0}

is compact, and f(x,y, z) is continuous, so there exists a minimizer, say (z*, y", z*).
Secondly, we compute

1 1 2x*
Vf=12|,Vg=1|1]|, Vh=|2¢"
3 1 22"

D For (z*,y",2*) # 0, then {Vh(z*,y*.2*)} is linearly independent.

@ There exists v € R? such that

x
(v, Vh(z*, y*, z")) = <v,2 y* > =0

1
(v,Vg) = <v, 1 >7é0
1

If (v, Vg) < 0, the qualification condition is automatically satisfied.
If (v, Vg) > 0, then we can replace v by —v so that (—v, Vg) < 0and (—v, Vh(z*,y*, z")) =0
so that the qualification condition holds.

and

So, the M-F condition holds. By the KKT theorem, there exist A > 0 and x € R such that

Ag(x*,y*, %) =0
V(" y" 2") + AVg(a™,y", 2%) = 0+ uVh(z", y",2") = 0

AMz*+y" " +2)=0 (1)
1 1 2"
21 +A| 1 +pl2s] =0 (2
3 1 22"
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By solving equations in (2), we can conclude 1 # 0 and

L+ A L 24N L 34
€r = _—, y = — 5 Zz = ———"
1t 1 T
Hence, putting all into (1) and gives
A(6 4 3\
A-(x*—l—y*—i—z*):—gzo = 3M24+X) =0
i

Therefore, we have A = 0 or A = 2, we consider the following cases:

e Casel: A\=0 ;
Then, we have 2* = —— y* = —— and z* = ——
: : 1 4 9
Putting (a)? + (4)? + (=) = L we have 1 = — + — + — — y? = 14,
I
1 2 3

* *

So, in this case, we can solve z* = —

— Y =, = ——.
NN NGY

e Case2: A\ =2

1
Then, we have z* = —

, y'=0and 2" = ——.

0
Putting (z*)* + (y*)* + (2*)? = 1, we have

1 1
w2 e
p=2
So, we solve x =5 y =0, 2 =5

Now, it remains to compare f at (—1/v/14, —2/v/14, —=3/+/14) and (v/2/2,0, —v/2/2).
We have

f< 1 2 3 )_ 1 4 9
V14 V14T V14) V14 V14 V14
= —V14
< —V2
2 2
:f £707_\/_
2 2
Thus, we have
min 4+ 2y+3z2=-v14
x4y +2°=1
z+y+2<0
d th t'llt"(***)(1 2 3) <
and the optimal solution is (z*,y", 2z") = | — ,— , — .
P Y V14T /147 V14
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3 Convex Optimization

Today, we begin a new chapter - Convex Optimization. The main reference for the second part of our
course is:

G.Lan
First—-order and Stochastic optimization Methods
for Machine Learning

In this section, we consider the following problem

inf f(x
:cer( ) K 18 convex

{ f 1is convex

and
K={zxeR":g(x) <0, hj(zx)=0,i=1,....¢, j=1,...,m}

with ¢;(-) and h;(-) are convex functions.

Convex Set

Definition 1. A set X' C R" is said to be convex if
M+ (1-NyeK

whenever 2,y € K and A € [0, 1].

. MNon-convex set
Convex set

Figure 1: Example and Counterexample of Convex Set

Example 3. The following are examples of Convex sets.
@D R" is convex.
@ R} :={zr€R":2y >0, i=1,2,...,n} is convex, because

Va:,y - Ri = M\ + (1 — )\)’y = ()\Z’z + (1 — A)yi>i:1,2 ..... n € Ri

@ Balls: K := {x € R": ||z|| < 1} is convex because

Ve,ye K = [[Az+ (1 =Nyl < Az + (1 =Myl <1
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@ K:={zcR": ATz <b or Az =b, where A € R",b € R} is convex because

T _ o\ 4T _ T
Veye K = A A+ (1-ANy)=2A"z+(1-NAy<b

<b <b

Lemma 1. Let Ky, - - - , K,,, be convex subsets of R". Then
m
m K, is convex.
i=1

Proof. For any x,y € ﬂKi, wehave xr € K;, y; € K;forall: =1,2,... m.
Since each K is convex, so for every A € [0, 1], we have

M+ (1-NyeK; Vi=1,....,m
= )\x+(1—)\)yEﬂKi

Projection onto convex Set

Definition 2. Let K be a closed convex subset of R". Then for any y € R", we define the closed
point to y in K as
projx(y) = argmin jy — z|

and call it the projection of y onto K.

Proposition 2. Let K be a closed convex subset of R". Then, there exist a unique point ™ € K such
that

x| : _
ly — 2| = min[ly — z].

Remarks. If K is open, then the projection proj (y) may not exist.
For example, if n = 1, K = (0, 1) and y = 2, but the minimizer to i?f : |ly — x|| does not exist.
z€(0,1

Remarks. 1t is equivalent to consider in[f( |y — ||* in the definition of proj ().
xre

— End of Lecture 7 —
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