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1 Recall
The problem (P ) and the feasible set K as follows:

inf
x∈Rn

f(x) subject to

{
gi(x) ≤ 0, i = 1, . . . , ℓ

hj(x) = 0, j = 1, . . . ,m
(P )

where f, gi, hj ∈ C1, and

K = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , ℓ, j = 1, . . . ,m}

Also, together with optimal solution x∗ and the qualification, we have the following:

KKT Theorem:
Let x∗ ∈ K be a solution to (P ) and assume that K is qualified at x∗. Then there exists
λ1, · · · , λℓ ≥ 0 and µ1, · · · , µm ∈ R such that

ℓ∑
i=1

λigi(x
∗) = 0

∇f(x∗) +
ℓ∑

i=1

λi∇gi(x
∗) +

m∑
j=1

µj∇hj(x
∗) = 0

For the qualification conditions that we had mentioned before, we have two conditions:

Mangasarian Fromovitz Qualification condition:

1⃝ the family of vectors {∇h1(x), . . . ,∇hm(x)} is linearly independent.

2⃝ there exists a vector v ∈ Rn satisfying

⟨∇hj(x
∗), v⟩ = 0, ∀j = 1, . . . ,m

and
⟨∇gi(x

∗), v⟩ < 0, ∀i ∈ I(x) := {k : gk(x) = 0}.

Then the constraint K is qualified at x ∈ K.

Abadie’s Condition:

TK(x) =
{
v ∈ Rn : ∃(sk, vk) → (0+, v) and x+ skvk ∈ K

}
D =

{
v ∈ Rn :

⟨∇gi(x), v⟩ ≤ 0, ∀i = 1, . . . , ℓ satisfying gi(x) = 0
⟨∇hj(x), v⟩ = 0, ∀j = 1, . . . ,m

}
If TK(x) = D, then the constraint K is qualified at x ∈ K.
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2 Application
Example 1. Solve the following problem:

min
x2+y2+z2≤1

x≥0

x+ y + z.

Solution. Letting f(x, y, z) = x + y + z. Clearly, now n = 3 and we only have the inequality
constraints, put g1(x, y, z) = x2 + y2 + z2 − 1 and g2(x, y, z) = −x.
Now, first, we consider

K = {(x, y, z) ∈ R3 : g1(x, y, z) ≤ 0, g2(x, y, z) ≤ 0}

is compact, and f(x, y, z) is continuous, so there exists a minimizer, say (x∗, y∗, z∗). Then, we
compute

∇g1(x, y, z) =

2x
2y
2z

 , ∇g2(x, y, z) =

−1
0
0


Let v =

v1
v2
v3

 be such that v1 > 0, then we have ⟨v,∇g2⟩ = −v1 < 0.

Now, to choose v2, v3, we consider the following cases:

• Case 1: y∗ = z∗ = 0,
Then ⟨v,∇g1(x, y, z)⟩ = 2v1 · x∗ ≥ 0.
So, the Mangasarian-Fromovitz Qualification condition is not satisfied.
In this case, we cannot apply the KKT theorem and thus the solution is (x∗, y∗, z∗) = (0, 0, 0).

• Case 2: y∗z∗ ̸= 0
Then there exists (v2, v3) such that

⟨v,∇g1(x, y, z)⟩ = 2 · (v1x∗ + v2y
∗ + v3z

∗) < 0

So, the Mangasarian-Fromovitz Qualification condition is satisfied.
As the qualification holds, we can apply the KKT theorem, so there exists λ1, λ2 ≥ 0 such that

λ1g1(x, y, z) = λ2g2(x, y, z) = 0

and 1
1
1

+ λ1

2x∗

2y∗

2z∗

+ λ2

−1
0
0

 =

0
0
0


=⇒


1 + 2λ1x

∗ − λ2 = 0

1 + 2λ1y
∗ = 0

1 + 2λ1z
∗ = 0

From the above, we can deduce that λ1 ̸= 0, so we have y∗ = z∗ = − 1

2λ1

.

Putting back to the first equation, we have x∗ =
λ2 − 1

2λ1

≥ 0.
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These imply that λ1 > 0 and λ2 ≥ 1 > 0, so g1(x
∗, y∗, z∗) = g2(x

∗, y∗, z∗) = 0.
So, we have x∗ = 0 and (x∗)2 + (y∗)2 + (z∗)2 − 1 = 0.

Putting all together, we have x∗ = 0 and y∗ = z∗ = −
√
2

2
.

By comparing the values of f at (0, 0, 0) and (0,−
√
2/2,−

√
2/2), we conclude that

f

(
0,−

√
2

2
,−

√
2

2

)
= −

√
2 < 0 = f(0, 0, 0)

and so the optimizer is (x∗, y∗, z∗) =

(
0,−

√
2

2
,−

√
2

2

)
. ◀

Let us finish this part by introducing one more example.

Example 2. Solve the following problem

min
x2+y2+z2=1
x+y+z≤0

x+ 2y + 3z.

Solution. Letting f(x, y, z) = x + 2y + 3z and n = 3. Let g(x, y, z) = x + y + z and h(x, y, z) =
x2 + y2 + z2.
Now, first, we consider

K = {(x, y, z) ∈ R3 : g(x, y, z) ≤ 0, h(x, y, z) = 0}

is compact, and f(x, y, z) is continuous, so there exists a minimizer, say (x∗, y∗, z∗).
Secondly, we compute

∇f =

1
2
3

 , ∇g =

1
1
1

 , ∇h =

2x∗

2y∗

2z∗

 .

1⃝ For (x∗, y∗, z∗) ̸= 0, then {∇h(x∗, y∗.z∗)} is linearly independent.

2⃝ There exists v ∈ R3 such that

⟨v,∇h(x∗, y∗, z∗)⟩ =

〈
v, 2

x∗

y∗

z∗

〉 = 0

and

⟨v,∇g⟩ =

〈
v,

1
1
1

〉 ̸= 0

If ⟨v,∇g⟩ < 0, the qualification condition is automatically satisfied.
If ⟨v,∇g⟩ > 0, then we can replace v by −v so that ⟨−v,∇g⟩ < 0 and ⟨−v,∇h(x∗, y∗, z∗)⟩ = 0
so that the qualification condition holds.

So, the M-F condition holds. By the KKT theorem, there exist λ ≥ 0 and µ ∈ R such that{
λg(x∗, y∗, z∗) = 0

∇f(x∗, y∗, z∗) + λ∇g(x∗, y∗, z∗) = 0 + µ∇h(x∗, y∗, z∗) = 0

=⇒


λ(x∗ + y∗ + z∗) = 0 (1)1

2

3

+ λ

1

1

1

+ µ

2x∗

2y∗

2z∗

 = 0 (2)
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By solving equations in (2), we can conclude µ ̸= 0 and

x∗ = −1 + λ

µ
, y∗ = −2 + λ

µ
, z∗ = −3 + λ

µ
.

Hence, putting all into (1) and gives

λ · (x∗ + y∗ + z∗) = −λ(6 + 3λ)

µ
= 0 =⇒ 3λ(2 + λ) = 0

Therefore, we have λ = 0 or λ = 2, we consider the following cases:

• Case 1: λ = 0

Then, we have x∗ = − 1

µ
, y∗ = − 2

µ
and z∗ = − 3

µ
.

Putting (x∗)2 + (y∗)2 + (z∗)2 = 1, we have 1 =
1

µ2
+

4

µ2
+

9

µ2
=⇒ µ2 = 14.

So, in this case, we can solve x∗ = − 1√
14

, y∗ = − 2√
14

, z∗ = − 3√
14

.

• Case 2: λ = 2

Then, we have x∗ =
1

µ
, y∗ = 0 and z∗ = − 1

µ
.

Putting (x∗)2 + (y∗)2 + (z∗)2 = 1, we have

1

µ2
+

1

µ2
= 1

µ =
√
2

So, we solve x∗ =

√
2

2
, y∗ = 0, z∗ = −

√
2

2
.

Now, it remains to compare f at (−1/
√
14,−2/

√
14,−3/

√
14) and (

√
2/2, 0,−

√
2/2).

We have

f

(
− 1√

14
,− 2√

14
,− 3√

14

)
= − 1√

14
− 4√

14
− 9√

14

= −
√
14

< −
√
2

= f

(√
2

2
, 0,−

√
2

2

)

Thus, we have
min

x2+y2+z2=1
x+y+z≤0

x+ 2y + 3z = −
√
14

and the optimal solution is (x∗, y∗, z∗) =

(
− 1√

14
,− 2√

14
,− 3√

14

)
. ◀

4 Prepared by Max Shung



3 Convex Optimization
Today, we begin a new chapter - Convex Optimization. The main reference for the second part of our
course is:

G.Lan
First-order and Stochastic optimization Methods
for Machine Learning

In this section, we consider the following problem

inf
x∈K

f(x)

{
f is convex
K is convex

and
K = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0, i = 1, . . . , ℓ, j = 1, . . . ,m}

with gi(·) and hj(·) are convex functions.

Convex Set
Definition 1. A set K ⊆ Rn is said to be convex if

λx+ (1− λ)y ∈ K

whenever x, y ∈ K and λ ∈ [0, 1].

Figure 1: Example and Counterexample of Convex Set

Example 3. The following are examples of Convex sets.

1⃝ Rn is convex.

2⃝ Rn
+ := {x ∈ Rn : x1 ≥ 0, i = 1, 2, . . . , n} is convex, because

∀x, y ∈ Rn
+ =⇒ λx+ (1− λ)y = (λxi + (1− λ)yi)i=1,2,...,n ∈ Rn

+

3⃝ Balls: K := {x ∈ Rn : ∥x∥ ≤ 1} is convex because

∀x, y ∈ K =⇒ ∥λx+ (1− λ)y∥ ≤ λ∥x∥+ (1− λ)∥y∥ ≤ 1
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4⃝ K := {x ∈ Rn : ATx ≤ b or ATx = b, where A ∈ Rn, b ∈ R} is convex because

∀x, y ∈ K =⇒ AT (λx+ (1− λ)y) = λATx︸︷︷︸
≤b

+(1− λ)ATy︸︷︷︸
≤b

≤ b

Lemma 1. Let K1, · · · , Km be convex subsets of Rn. Then

m⋂
i=1

Ki is convex.

Proof. For any x, y ∈
⋂

Ki, we have x ∈ Ki, yi ∈ Ki for all i = 1, 2, . . . ,m.
Since each Ki is convex, so for every λ ∈ [0, 1], we have

λx+ (1− λ)y ∈ Ki ∀i = 1, . . . ,m

=⇒ λx+ (1− λ)y ∈
⋂

Ki

Projection onto convex Set
Definition 2. Let K be a closed convex subset of Rn. Then for any y ∈ Rn, we define the closed
point to y in K as

projK(y) = argmin
x∈K

∥y − x∥

and call it the projection of y onto K.

Proposition 2. Let K be a closed convex subset of Rn. Then, there exist a unique point x∗ ∈ K such
that

∥y − x∗∥ = min
x∈K

∥y − x∥.

Remarks. If K is open, then the projection projK(y) may not exist.
For example, if n = 1, K = (0, 1) and y = 2, but the minimizer to inf

x∈(0,1)
∥y − x∥ does not exist.

Remarks. It is equivalent to consider inf
x∈K

∥y − x∥2 in the definition of projK(y).

— End of Lecture 7 —
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